1,279 research outputs found

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS

    Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF
    The fiducial cross section for Y(1S) pair production in proton-proton collisions at a center-of-mass energy of 13 TeV in the region where both Y(1S) mesons have an absolute rapidity below 2.0 is measured to be 79±11(stat)±6(syst)±3(B) pb assuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the Y(1S) meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9fb⁻¹. This process serves as a standard model reference in a search for narrow resonances decaying to Y(1S)μ⁺μ⁻ in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two b quarks and two b antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5 GeV, while a generic search for other resonances is performed for masses between 16.5 and 27 GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate Y(1S) resonance are set as a function of the resonance mass

    MUSiC: a model-unspecific search for new physics in proton–proton collisions at √s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton–proton collision data recorded at the LHC at a centre-of-mass energy of 13TeV, corresponding to an integrated luminosity of 35.9fb-1, are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches

    Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF
    The fiducial cross section for Y(1S) pair production in proton-proton collisions at a center-of-mass energy of 13 TeV in the region where both Y(1S) mesons have an absolute rapidity below 2.0 is measured to be 79±11(stat)±6(syst)±3(B) pb assuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the Y(1S) meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9fb⁻¹. This process serves as a standard model reference in a search for narrow resonances decaying to Y(1S)μ⁺μ⁻ in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two b quarks and two b antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5 GeV, while a generic search for other resonances is performed for masses between 16.5 and 27 GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate Y(1S) resonance are set as a function of the resonance mass

    Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at √s=13Te

    Get PDF
    A combination of searches for top squark pair production using proton–proton collision data at a center-of-mass energy of 13TeV at the CERN LHC, corresponding to an integrated luminosity of 137fb1^{-1} collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on the model, the combined result excludes a top squark mass up to 1325GeV for a massless neutralino, and a neutralino mass up to 700GeV for a top squark mass of 1150GeV. Top squarks with masses from 145 to 295GeV, for neutralino masses from 0 to 100GeV, with a mass difference between the top squark and the neutralino in a window of 30GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420GeV

    A measurement of the Higgs boson mass in the diphoton decay channel

    Get PDF
    A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9 fb(-1) of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a centre-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be m(H) = 125.78 +/- 0.26GeV. This is combined with a measurement of m(H) already performed in the H -> ZZ -> 4l decay channel using the same data set, giving m(H) = 125.46 +/- 0.16GeV. This result, when further combined with an earlier measurement of m(H) using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of m(H) = 125.38 +/- 0.14GeV. This is currently the most precise measurement of the mass of the Higgs boson. (C) 2020 The Author(s). Published by Elsevier B.V.Peer reviewe

    Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)mu(+)mu(-) in proton-proton collisions at root s=13 TeV

    Get PDF
    The fiducial cross section for Y(1S) pair production in proton-proton collisions at a center-of-mass energy of 13TeVin the region where both Y(1S) mesons have an absolute rapidity below 2.0 is measured to be 79 +/- 11 (stat) +/- 6 (syst) +/- 3 (B) pbassuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the Y(1S) meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1). This process serves as a standard model reference in a search for narrow resonances decaying to Y(1S)mu(+)mu(-) in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two bquarks and two (b) over bar antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5 GeV, while a generic search for other resonances is performed for masses between 16.5 and 27 GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate Y(1S) resonance are set as a function of the resonance mass. (C) 2020 The Author(s). Published by Elsevier B.V.Peer reviewe

    Evidence for X(3872) in Pb-Pb Collisions and Studies of its Prompt Production at sNN\sqrt{^{s}NN} =5.02 TeV

    Get PDF
    The first evidence for X(3872) production in relativistic heavy ion collisions is reported. The X(3872) production is studied in lead-lead (Pb-Pb) collisions at a center-of-mass energy of sNN\sqrt{^{s}NN}=5.02 TeV per nucleon pair, using the decay chain X(3872)→J/ψπ+^{+} π^{–}→μ+^{+}μ^{–}π+^{+} π^{–}. The data were recorded with the CMS detector in 2018 and correspond to an integrated luminosity of 1.7 nb1^{-1}. The measurement is performed in the rapidity and transverse momentum ranges |y|<1.6 and 15<pT<50 GeV/c. The significance of the inclusive X(3872) signal is 4.2 standard deviations. The prompt X(3872) to ψ2S yield ratio is found to be ρPbPb^{Pb-Pb}=1.08±0.49(stat)±0.52(syst), to be compared with typical values of 0.1 for pp collisions. This result provides a unique experimental input to theoretical models of the X(3872) production mechanism, and of the nature of this exotic state
    corecore